Sponsored By

What Is a Wireless EV Battery Management System?

Marelli’s product manager explains battery management system technology.

Dan Carney, Senior Editor

July 13, 2023

4 Min Read
Battery-System_infographic-1.jpg
Marelli

The increasing complexity of electric vehicle design suggests the value of examination of some of the emerging technologies, such as wireless battery management systems. Italian supplier Marelli announced its product in this sector last year, so we thought it would be helpful to chat with Davide Cavaliere, Marelli’s product manager of battery management systems.

The company boasts that the Marelli wBMS can be delivered with a highly sophisticated software application layer that uses advanced algorithms that exploit “Sensor Fusion”. These algorithms estimate several crucial parameters of each battery cell – including State of Charge, State of Health, and State of Power – to ensure a more accurate calculation of the battery's overall status and inform the other components of the powertrain accordingly.

Cavaliere explained in more detail in this Q&A:

Q: What is the battery management system and what are its functions in an electric vehicle?

Davide Cavaliere: The battery management system, also called BMS, is an electronic control unit, that monitors the condition of every single cell located in the battery pack. It is a mandatory device for vehicles equipped with a lithium-ion battery. Battery cells are designed to safely operate in a restricted range of voltage current and temperature. The battery management system constantly monitors these physical quantities to make sure that the limits are not exceeded.

Doing this ensures that the cells don't operate in unsafe conditions and battery cell degradation can be minimized. Other functions include the estimation of the cell's internal state, for example, the state of charge, health, and power.

Q: What are the relevant technologies?

Davide Cavaliere: There are two main types of BMS architecture: centralized and distributed. In a centralized BMS architecture, all cells are connected to the same BMS board. This is an effective solution for battery packs that contain a limited amount of cells, up to 100 cells, according to our experience.

In contrast to that the distributed BMS architecture is composed of two types of boards; a single master board and multiple boards. These boards are located close to the cells, each monitoring from six up to a few dozen cells. Boards are then connected to the master board through a digital communication daisy chain.

This distributed architecture is preferable for middle- and large-scale battery packs used on plug-in hybrid electric vehicles and battery electric vehicles, which have a hundred or more cells connected in series. Marelli has experience with both centralized and distributed BMS architectures, and for the second type we have developed both wired and wireless communication.

BMS-distributed_EPT-2048x1365.jpg

Marelli''s wireless battery management system hardware.

Q: How does a wireless BMS work and what are its key elements?

Davide Cavaliere: A wireless BMS is a type of distributed BMS in which the communication between boards is done wirelessly rather than using a wired daisy chain. The data exchange between them is based on a 2.4 gigahertz radio frequency, similar to the communication established between a pair of Bluetooth earphones and a smartphone.

Most of the components used are the same as those of a conventional distributed BMS the only thing that changes is that the communication interface is done using a wireless integrated circuit coupled with an antenna instead of a wired communication transceiver.

Q: What are the advantages of a wireless BMS over a wired solution?

Davide Cavaliere: The main advantage is that communication cables for the daisy chain are no longer needed. Due to that there is an opportunity to reduce cost and weight.

Moreover, battery pack design is simplified since car manufacturers don't need to focus on the design of this part of the wiring harness. This weight reduction also translates into less energy required to move the vehicle and therefore a longer range. In practice, more kilometers can be run with a single charge.

Q: Is wireless technology secure?

Davide Cavaliere: if not designed properly wireless communication is less secure than wired communication because the data is accessible to anyone within the radio wave propagation range. Nevertheless, there are countermeasures such as encryption to authenticate and protect the data during transmission. In addition to that, boards are located inside the battery pack which has a metallic enclosure they are shielded from the external environment.

Q: What factors affect the performance of wireless systems?

Davide Cavaliere: The most important factors for wireless technology are data throughput – megabits per second --, signal strength, and power consumption. These factors are dependent on each other and cannot be all optimized at the same time. For example, increasing data throughput or signal strength comes with an additional power consumption which, since power is absorbed by the battery, should be limited to avoid excessive drain.

Excellence in wireless BMS technology is achieved by optimizing these factors to get fast communication speeds and long range in addition to acceptable power consumption. This requires plenty of experience in choosing the right communication protocol and properly designing the radio frequency part of the system. The antenna and its matching circuit must be optimized to achieve the best performance.

 

About the Author

Dan Carney

Senior Editor, Design News

Dan’s coverage of the auto industry over three decades has taken him to the racetracks, automotive engineering centers, vehicle simulators, wind tunnels, and crash-test labs of the world.

A member of the North American Car, Truck, and Utility of the Year jury, Dan also contributes car reviews to Popular Science magazine, serves on the International Engine of the Year jury, and has judged the collegiate Formula SAE competition.

Dan is a winner of the International Motor Press Association's Ken Purdy Award for automotive writing, as well as the National Motorsports Press Association's award for magazine writing and the Washington Automotive Press Association's Golden Quill award.

AstonMartinVanquish_©AndyMorgan_025_copy_2.JPG

He has held a Sports Car Club of America racing license since 1991, is an SCCA National race winner, two-time SCCA Runoffs competitor in Formula F, and an Old Dominion Region Driver of the Year award winner. Co-drove a Ford Focus 1.0-liter EcoBoost to 16 Federation Internationale de l’Automobile-accredited world speed records over distances from just under 1km to over 4,104km at the CERAM test circuit in Mortefontaine, France.

He was also a longtime contributor to the Society of Automotive Engineers' Automotive Engineering International magazine.

He specializes in analyzing technical developments, particularly in the areas of motorsports, efficiency, and safety.

He has been published in The New York Times, NBC News, Motor Trend, Popular Mechanics, The Washington Post, Hagerty, AutoTrader.com, Maxim, RaceCar Engineering, AutoWeek, Virginia Living, and others.

Dan has authored books on the Honda S2000 and Dodge Viper sports cars and contributed automotive content to the consumer finance book, Fight For Your Money.

He is a member and past president of the Washington Automotive Press Association and is a member of the Society of Automotive Engineers

Sign up for the Weekly Current newsletter.

You May Also Like